MECHANICS (A) UNIT 3

www.mymathscloud.com

Take $g = 9.8 \text{ ms}^{-2}$ and give all answers correct to 3 significant figures where necessary.

A motorcyclist rides in a cylindrical well of radius 5 m. He maintains a horizontal circular path at a constant speed of 10 ms⁻¹. The coefficient of friction between the wall and the wheels of the cycle is μ . Modelling the cyclist and his machine as a particle in contact

with the wall, show that he will not slip downwards provided that $\mu \ge 0.49$.

(7 marks)

A particle P moves with simple harmonic motion in a straight line. The centre of oscillation is O. When P is at a distance 1 m from O, its speed is 8 ms⁻¹. When it is at a distance 2 m from O, its speed is 4 ms⁻¹.

(a) Find the amplitude of the motion.

(4 marks)

(b) Show that the period of motion is $\frac{\pi}{2}$ s.

(3 marks)

A particle of mass m kg is attached to the end B of a light 3. elastic string AB. The string has natural length I m and modulus of elasticity λ. N.

The end A is attached to a fixed point on a smooth plane inclined at an angle α to the horizontal, as shown, and the particle rests in equilibrium with the length $AB = \frac{5l}{A}$ m.

(a) Show that $\lambda = 4 mg \sin \alpha$.

(3 marks)

The particle is now moved and held at rest at A with the string slack. It is then gently released so that it moves down the plane along a line of greatest slope.

- (b) Find the greatest distance from A that the particle reaches down the plane. (6 marks)
- The acceleration $a \text{ ms}^{-2}$ of a particle P moving in a straight line away from a fixed point O is given by $a = \frac{k}{1+t}$, where t s is the time that has elapsed since P left O, and k is a constant.
 - (a) By solving a suitable differential equation, find an expression for the velocity v ms⁻¹ of Pin terms of t, k and another constant c. (3 marks)

Given that v = 0 when t = 0 and that v = 4 when t = 2,

(b) show that
$$v \ln 3 = 4 \ln (1 + t)$$
.

(3 marks)

(c) Calculate the time when P has a speed of 8 ms⁻¹.

(3 marks)

MECHANICS 3 (A) TEST PAPER 4 Page 2

- www.mymathscloud.com A particle of mass m kg, at a distance x m from the centre of the Earth, experiences a force of magnitude $\frac{km}{2}$ N towards the centre of the Earth, where k is a constant. Given that the radius of the Earth is 6.37 x 10⁶ m, and that a 3 kg mass experiences a force of 30 N at the surface of the Earth,
 - (a) calculate the value of k, stating the units of your answer. (3 marks)

The 3 kg mass falls from rest at a distance $x = 12.74 \times 10^6$ m from the centre of the Earth. Ignoring air resistance,

(b) show that it reaches the surface of the Earth with speed 7.98 x 10³ ms⁻¹.

In a simplified model, the particle is assumed to fall with a constant acceleration 10 ms⁻². According to this model it attains the same speed as in (b), 7.98 x 10³ ms⁻¹, at a distance $(12.74 - d) \times 10^6$ m from the centre of the Earth.

(c) Find the value of d.

(3 marks)

- A particle P of mass 0.4 kg hangs by a light, inextensible string of length 20 cm whose other end is attached to a fixed point O. It is given a horizontal velocity of 1.4 ms⁻¹ so that it begins to move in a vertical circle. If in the ensuing motion the string makes an angle of θ with the downward vertical through O, show that
 - (a) θ cannot exceed 60°, (6 marks)
 - (b) the tension, T N, in the string is given by $T = 3.92(3 \cos \theta 1)$. (4 marks)

If the string breaks when $\cos \theta = \frac{3}{5}$ and P is ascending,

- (c) find the greatest height reached by P above the initial point of projection. (5 marks)
- A uniform solid sphere, of radius a, is divided into two sections by a plane at a distance $\frac{a}{2}$ from the centre and parallel to a diameter.
 - (a) Show that the centre of gravity of the smaller cap from its plane face is $\frac{7a}{40}$. This smaller cap is now placed on an inclined plane whose angle of inclination to the horizontal is θ . The plane is rough enough to prevent slipping and the cap rests with its curved surface in contact with the plane.
 - (b) If the maximum value of θ for which this is possible without the cap turning over is 30°, find the corresponding maximum inclination of the axis of symmetry of the cap to the vertical. (6 marks)